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extension of Chisnell's method* 
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SUMMARY 
Chisnell's approximating ordinary differential equation for the motion of a shock in a variable area duct is 
generalized to allow for phase changes behind the shock. 

1. Introduction 

For  systems of conservation laws of the form u t + fx(u) = 0, the propagation of shock and 
rarefaction waves is rather well understood. A general theory is given in [5], while specific 

problems are studied in detail in [2] and [10]. In [-7] a theory of shock and rarefaction 
waves for anomalous gases is presented. 

In all of these works it is crucial that the conservation law has exactly the form given 
above; namely, there are no lower order terms, andf(u)  depends only on u, not on x or t 
explicitly. A problem which does not satisfy these constraints is that of single phase flow in 
a variable area duct. If  the area is a(x), the equations are 

~ -  (ap) #x (apv) = 0, (1) 

1 
v, + vv~ + P p~ = 0, (2) 

8 0 (av(pe + lpv2)) + 0 (pva) = 0. (3) f it- (a(pe + �89 + ~ -x  

The quantities p, v, and e are respectively the density, velocity and internal energy aver- 
aged across the duct. In this one-dimensional approximation to three-dimensional flow, 
momentum is not conserved. Note  that if the second equation is multiplied by ap we have 

c ~ c~ 
~3--t- (apv) + ~ (apv a) + apx = O, (4) 

which is still not in conservation form. 

* Work performed under the auspices of the U.S. Energy Research and Development Administration and the 
U.S, Nuclear Regulatory Commission. 

Journal of Engineering Math., Vol. 11 (1977) 273-286 



274 B. Wendroff 

Chisnell [1] studied the problem of a shock propagating along a variable duct, with the 
gas ahead of the shock at rest. Neither the shock speed nor the state behind the shock are 
constant, and an exact solution is not available. Chisnell was able to derive an ordinary 
differential equation, da/dx = F(a, x), for the shock speed o-. The solution of this equation 
is, of course, only an approximation to the true shock speed. The solution is accurate if the 
flow behind the shock is nearly steady, and if waves generated behind the shock do not 
interact strongly with it. 

In the next section we give a general, formal derivation of two shock propagation 
equations, one of which is a generalization of Chisnell's equation. In [9] another de- 
rivation is given which can also be generalized. In Section 3 we give a third, very heuristic 
derivation, and apply the equations to two examples one of which is the problem studied 
by Chisnell. In Section 4 we discuss a particular model of two-phase flow and give some of 
the details of the shock propagation equations for that model. The remaining details 
require the complete solution of the shock tube problem (Riemann problem) in a straight 
duct without phase changes, which is done in Section 5. 

2. The shock propagation equations 

We begin by considering a system of the form 

u, + Au x = g(u, x) 

with initial conditions 

{ u~ = constant, x < 0 
U =  

u~ constant, x > 0 

and we assume g(u,, x) = 0, x > 0, although this is not essential. 
We are going to use a splitting technique which has proved useful in numerical analysis. 

Suppose one has an ordinary differential equation 

dy 
at - b ( y )  + c(y) = d(y). 

Let D be the solution operator of this equation; that is, the solution at time t with data 

Yo at time 0 is 

y(t) = o(t,  yo). 

Let B and C be the solution operator for dy/dt = b(y) and dy/dt = c(y) respectively. Then, 
formally, 

B(At, C(~t, Yo)) = D(~t, Yo) + O(~t) 2 

This follows easily f rom Taylor ' s  theorem. 
Suppose now that  at t ime tn_ 1 = (n - 1 ) A t  the shock is at x ,_  1 and has speed a ,_  1. Let  

the state just  to the left of  the shock be u,_ 1. The first split step is to let fi be the solution of 
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Shock propagation in variable area ducts 275 

u, = g(u, x ._~ ) ,  u(O) = u ._~  (5) 

evaluated at t = A t. The next step is to solve the shock tube problem with 9 = 0, left state 
~, right state u r, assuming that this makes sense. Assuming that a leading shock is pro- 
duced, put u, equal to the state of the left of the shock and a ,  equal to the new shock 
speed. See Fig. 1. 

er n 

Un-/Xn-I 
Speed O'n_ I 

Figure 1. 

To express this analytically, parametrize the shock by its speed, so that we can write the 
Hugoniot  curve as u = H(a);  in particular u,_ 1 = H(a,_ 2). 

Let S(t, u, x) be the solution operator ofeq. (5) so that 

= S(At, u , _ l , x , _ l ) .  

Let R(u) be the speed of the leading shock resulting from the Riemann problem with left 
state u, right state u r. Then 

a, = R(fi) = R-S(At ,  Un_l, Xn_l) 

8 
= R" S(O, u,_l ,  x ,_~) + A t ~ t - R .  S(O, u ._t ,  x ,_~) + O(At) 2. 

But S(0, u,_ 1, x _ 1 ) = u,_ 1 and R(u, _ a ) = a,_ 1, so 

c r " - a " - I  ~--~R'S(O, x , _ l ) + O ( A t  ). 
-z~t ~- Un- 1' 

Letting R'  be the gradient vector we have 

8 
& - - R . S  = R ' . S . S  t = R " S . 9 ( u . _ I ,  x,_a). 

Formally passing to the limit, 

dr7 
dt = R'(H(a))" g(H(a)' y)' 
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where 

f: y = q(s) ds. 

In terms of y, we obtain thefirst shock propagation equation, 

do- 1 
- R'(U(a)).g(U(a), y). (6) 

dy a 

The expression R'(H(a)) means find R'(u) for arbitrary u and then substitute u = H(o-). 
Equation (6) is the shock propagation equation associated with the shock tube. A 

different propagation equation can be derived for the situation depicted in Fig. 2. 

B. Wendroff 

u=u~ 

g (u,x) = O,X <0 

Figure 2. 

! 

j 0 , o r x , : o  

In this case a shock moving at a constant speed in a region where g = 0 enters a region 
where g r 0. An example of this would be a shock moving in a tube with variable cross- 
section. It is easy to see that the splitting technique can be applied here by interchanging 
the roles ofx  and t. The two split equations are 

Au~ = g and Au~ + u t = O, 

and the resulting second propagation equation is 

dG 
dx - R'(H(a))" A -  lg(H(a), x). (7) 

This is essentially the method used by Chisnell [1], as reported in Whitham [9], to 
describe the propagation of a hydrodynamic shock in a tube of variable cross-section. We 
show in the next section that eq. (7) is Chisnell's equation in that case. 

3. Another derivation and some examples 

We give a simpler derivation of eqs. (6) and (7) which shows more clearly the approxi- 
mations that are implied. This approach was suggested to us by J. Kevorkian. Suppose 
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there is just one differential equation. Then 

da da du da l'~u 1 + ~ "~ 
dx - du dx - du [ ~xx a 

If the state behind the shock is independent of t, then 

da da Ou da 
d x  - du Ox - du A-ag" 

On the other hand, if u is independent of x, then 

da 1 da 8u 1 da 

dt a du Ot a du g" 

In the scalar case, da/du = R'. In the vector case da/du is not well defined, but we may 
define it to be R', and accept this as an approximation. 

We can see now that both eqs. (6) and (7) require that waves generated behind the 
shock not interact too strongly with the shock, while eq. (7) requires the state behind the 
shock to be nearly independent of t and eq. (6) requires near independence of x. 

For  example, consider 

1, x < 0 
u t + u u ~ = - u ,  u(x ,O)= 0, x > 0 "  

The jump condition is o-(u - ur) = (u z - u~), or 

H(a)  2 a -  ur, R ( u ) =  i = ~(u + ur). 

Thus, from eq. (6), 

d~7 
dt - a ,  ~r(0) = �89 

or  

~(t) =~el -t. 

Indeed, the exact solution in this case is a shock propagating with speed �89 with 

u(x , t )  = ~ e- t  to the lef t  o f theshock  
~u to the right. 

We take up next the problem of a shock in a tube of variable cross-section a(x). The 
equations can be written 

a'(x) 
p, + vp~ + pu~ = - a(x---)- pv, 
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1 
vt + VVx + ~ Px = O, 

P 

p, + vpx - c2(pt + vp~) = O, 

where c 2 = @/Sp. Putting 

ta't (,o oi) (: .,1) 
- c  2 0 - c 2 v  0 

the system is 

Bu t + Cu x = j .  

Therefore in eq. (7) we put A = B -  aC, g = B -  1~. Thus, we need to find z, where A -  19 = z, 
or ~ = Cz, that is, 

a' 1 
- p v - -  = vza + pz2, 0 = VZ 2 -31- ~ z 3 ,  0 ~- - - C 2 z 1  Av 7. 3. 

a P 

Then eq. (7) becomes 

da ( c2 va' [ SR c2 8R 8R 1 d-~ = Z v;)~ pv~-p - 8~v + c2pv-@-p " (8) 

In eq. (8) the derivatives of R are to be evaluated as follows. Let (Pl, vz, Pt) be some left 
state and solve the Riemann problem�9 The state just behind the shock is (p, v, p). Then 

compute 8r etc., and then replace pt by p, etc. While these derivatives could be com- 
puted directly, the following observation simplifies the job. First, a, e, u can be expressed 

as functions of p. Second, the structure of the rarefaction wave is such that p depends on 

only two parameters, the Riemann invariants v = u z + 2(Tpl/pl)~(7 -- 1) and S (S = entropy, 

ep = P/(7 - 1)) 

8p 
- -  = 0 at p -- Pt, etc. 
8S~ 

Therefore 

d~r da dz OR da 8r 
etc., 

dx dz d x '  8v dr 8v 

so eq. (8) becomes 

dr va' c 

dx (c + v)a 

This is not Chisnell's equation; however, since the approximation is only good if the state 

Journal of Engineering Math., Vol. 11 (1977) 273-286 



Shock propagation in variable area ducts 279 

behind the shock is nearly independent of t, OS/~t ~- - u(OS/Ox) --- O. In that case, 

dv dp vc2 pa ' 

pc d x  + d~  = (c + v)a'  

with (p, v, p) = H(a). This is just eq. (8.23) of [9], which is equivalent to Chisnell's equa- 
tion. 

4. The variable area duct with phase changes 

Many models of two-phase flow have been proposed, each having its own range of va- 
lidity and each having advantages and disadvantages. A reasonably complete description 
of such models is given in [4]. The model used here is a simplistic one from the physical 
point of view; the two phases (say, gas and liquid) are assumed to be always moving at the 
same velocity and to have the same temperature. We call this mechanical equilibrium and 
thermal equilibrium. Another assumption that is made is that there is a well-defined void 
fraction a(x, t); this has the property that the integral of a over any spatial volume is the 
fraction of that volume occupied by gas. 

The differential equations of the mechanical equilibrium-thermal equilibrium model are 

O--t (apa) + ~ (apav) = a~, (9) 

g-7 (ap'a') + (ap'a'v) =- - a~,  (10) 

0(___ v 0 v ~  0p 

\ &  + ~xJ  = ~x'  
(11) 

0 0 
a(�89 + -~) + ~ x  [av(�89 + ~ )  + apv] = O. 

O--t 
(12) 

The symbols used in these equations have the following meaning: a, p, v, e, S, T are 
respectively the void fraction and density, velocity internal energy, entropy, and tempera- 
ture of the gas, p', e', S' are the corresponding quantities for the liquid, a' = 1 - a,/5 = ap 

+ a'p', p-~ = ape + a'p'e', a(x) is the area of the duct, ~b is the rate of gas mass production 
per unit volume, and is assumed given as a function of the other dependent variables. 

The pressure p is taken to be the gas pressure, assumed to be given by 

p = (y - 1 )  exp [ S -  S~ ] p~, 
k cv _1 

c~ = constant, S O = constant. 

Then 

(7 -- 1)pe = p and e = c~T+ eo, e 0 = constant. 
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For  the liquid we use 

p '  = constant,  e' = ' c;T, e o + 

where e o = constant,  c'~ = constant.  
In  order  to write the differential equat ions  in the form u t + Au:, = g, it is convenient  to 

use p, e, v, p as dependent  variables. Eq. (12) becomes 

F 
Pt + vPx - c2 - -  (Pt + vPx) = A, (13) 

7 

where 

c z = ~ p p ( p , s )  = - (Pp)~, 

! t ! ypo:cv + P ~ c v 
F -  

po~c v + ' , , , p O~ C v 

A = - 1 ) p c v  

e ' - e + p  P 
t t t 

po~c v + p O~ C v 

Then with u = (p, 0~, v, p)r and g = (gl, g2, g3, g4)  r w e  have 

But + Cux = g, 

(14) 

(15) 

where 

B = 

( ia vp po: Op l  

O0 - p '  0 - v p '  
0 1 C =  0 v , 

C2L 0 O 1-- 7 vc 2 0 0 

a I a '  / da 5 
gl  = - - p o ~ l ) -  "~ ~]5, g2 = --lOJO~"l)- -- ~r, ~a" = - - }  

a a dx,/ '  

~ 3 = 0 ,  ~ 4 = A .  

Thus  A = B -  1 C, g = B -  i~6. To  compute  the right side of  (7) we need 

z = A - i g  = C - i B ' B - l g  = C - l g .  

The solution of this system is 

1) a 
P' + c - T ~ A  v a 

z 3 - v2@~ ' , z4. = - pv z 3. 
1 c2 p1~ 
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It will be shown below that z 1 and z 2 are not needed. 
The quantity z 3 can be simplified somewhat. Note first that (see Section 5) the speed of 

sound in this model is 

c2 p F Fp 
c~- ~i'~ ~b' 

so that the denominator ofz 3 is 1 - v2/c~. 
Using the definition of A and rearranging terms, we may write 

( E a'l 
v 2 ~ - 1  

z 3 =  1 - - ~ T ]  ( X +  Y ) ~ - V a  ' (16) 

where 

1) 
X = T p p' (17) 

~cv(?- 1)p 
Y= (e' - e). (18) 

P(?P~G + p'a'c'~) 

In order to obtain the first propagation equation (6), we need g = B-10. In fact, all we 
will need are g3 and g4, which are 

cZFp I ~ ( 1  1 )  @ 1  [ " @ 1  . . . .  v =c~/3 ( X +  Y)r v . g3 0, g4 A + ya p' 

5. The complete shock propagation equations 

The first shock propagation equation (6) becomes 

o- 
do- ~R ~R ~R 3R 
dx = - ~ - g l  +~-~-gz +~-v g3 + ~-p g4= R"g, 

while eq. (7) becomes 

do- 
- R i . z .  

dx 

We remind the reader what R' is: the Riemann problem for a fixed right state and 
arbitrary left state Pz, ez, vt, Pt is resolved and supposed to produce a leading shock with 
speed o- = R = R(p~, cq, vt, p~). Frpm this we calculate OR/#p~, etc. However, this must be 
evaluated at the shock; that is, if (p, e, v, p) is the state just behind the shock, then we need 
R'(p, o~, v, p). To obtain this gradient we now refer to the equations and notation of the 
shock tube solution given in Section 6. We note that by eq. (41) the shock speed depends 
only on the pressure p behind the shock, which is determined by 
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/ / p  '~(rr  1)/2/'1 
T= V(P) + (r - v,)[ " ~ ]  

\ p , /  

where 

Therefore, at p = Pz, v = v~, p = &, c~ = % we see immediately that 

@ Op 

Further calculation shows that 

Op 
- - ~ h  
~v 

and 

@ h ( ~  ~ h 
= - - , a t  p = p ~ ,  

~Pl \ Fp~ ] cr~ 

where 

CrP / 

We now readily obtain the propagation equations. 

First shock propagation equation: 

daa_= da~_hcr~r_lI(X+y)ga_ v@]. (19) 
dx dp 

Second ( Chisnell) shock propagation equation: 

d-~c = d~c h 1 + (X + Y ) ~  - v . (20) 
dx dp 

The right sides of these equations must be expressed as functions of a, that is, p, l, a, and 
v must be written as functions of a. These functions are obtained from the shock jump 
conditions. We get 

do- 
- [ 2 a ( 1  - f i 2 ) G , a , ]  - 1 ,  ( 2 1 )  

dp 
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p = az0@r(1 _/22) _ flap,, 

283 

(22) 

p m Pr 
v = , (23) 

p q- f l 2pr  
P = P, p, + f 2 p ,  (24) 

Pr~r 
= . (25) 

pc( + P,G 

A short calculation shows that 

( p  + pr(l + 2fi 2) 1 ) - 1  

h = \ - 2 ~ - + - - f i ~ )  + ~Tfi 

The quantities X and Yare given by equations (16) and (17). 
We close this section with the following observation. If 

P e ~ r ~ o; Cv~ ~cve + ~ G P'/P > eeG P/P + e ' ' 

(26) 

We present in this section the complete solution of the shock tube problem, without 
proofs. First, for completeness, we restate the differential equations and equations of state 

3 
a-~ (~p) + T2x (~P~) = o, 

0 0 
~-[ (r + ~x (r = o, 

0 ~ ~p 
o--f (P~) + T2x ( S )  + ~ = o, 

O g O 
0 t  (�89 + ye) + ~ v( �89  + ~1 + ~ p~ = 0. 

Unprimed symbols refer to the gas, primed symbols refer to the liquid. Then p, v, e are 
respectively density, velocity, and internal energy. The void fraction is c~, and c( = 1 - c~. 
The quantity/3 is the mixture density, 

b = c~p + e'p'. 
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(e.g., if p' > p and p'e' > pe) then X + Y > 0. Since dcr/dp and h are positive, this means 
that the coefficient of q~ is positive (if v/c > - 1). Thus, condensation behind the shock will 
slow it down, evaporation will speed it up. 
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Also 

pe = p~e + p'~'e' .  

The equation of state of the gas is 

p = ( , - 1 )  exp [ s ~ ~  l p '  
L cv J 

where 

c~ = constant, s o = constant, s = entropy. 

The equation of state of the liquid is assumed to be 

r ,, cv 
e '  ~- e 0 + e 

r e 

I /  ! where, e o = constant, c v = constant. 
The differential equations are a hyperbolic system of conservation laws. There are four 

characteristic speeds: 

21 = I) - -  CT, 22 = 1~ 3 = I), 24. = 1) "{- CT, 

where 

( F p ' ~  ~ ),pec~ + p '  e '  c'~ 

If the left state has a higher density and lower void fraction than the right state, the 

solution of the shock tube problem is as shown in Fig. 3. 

ar 

S~ 
v I = 0  

x 

I-rarefaction 
Figure 3. Solution at t > 0. 

V = V 0 [ 

t 
P = Po I Pr 

P- I P+ II Sr 

s_ I s+ I vr=O 
contoct discontinuity 4-shock wave 

The 1-rarefaction wave corresponds to the eigenvalue v -  c r, the 4-shock wave cor- 

responds to the eigenvalue v + c r. 
In general, the solution is obtained by equating the velocity and pressure obtained from 
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the rarefaction wave to the velocity and pressure obtained from the shock wave. This 
determines p _, p +, and then the remaining variables can be computed. 

To find the intermediate states, let 

t/2_ G - 1  
F + 1 '  (27) 

q~(P) = - \-F~I--1 J, L\~-z / - 1 

- 2  l - qJ(p) = ((1 -7 # )ct ), (p,(p +//2pr))-~(p - p,) (29) 

Then, for Po, 

v, + ~(po) = ~'(po), (30) 

Vo = ~(Po), (31) 

Po q-//2Pr 
P+ = Pr , (32) 

Pr -t-//2p0 

Pr~r 0~ + l (33) 
p + ( 1 .  G) + P ,G '  

= ( P o ~  1/r' 
P-  \ ~ - z /  P" (34) 

PlO~l 
- = . ( 3 5 )  

p _  (1 - a t )  + p l~z  

To find the solution (p, ~, v, p) at a point (x, t) inside the rarefaction wave, let x / t  = ~l. 
Then the following equations determine (p, c~, v, p) at (x, t): 

v - c r = t/, (36) 

v z + qS(p) = v, (37) 

Pt~t P~ 
p '~ '  p '~ '  ' 

l 
(38) 

P =  p t ( p ] r ,  (39) 
\ P i /  

V = F t. (40) 

Finally, the shock speed is 

0.2 __ Po + / / 2 p r  

(1 - / / 2 ) ~ , p ,  
(41) 
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M a n y  papers  have  been  wr i t t en  o n  acoust ic ,  rarefact ion,  a n d  shock  waves in  two-phase  

flow. A fairly comple te  survey  u p  to 1968 is g iven in  [3] ,  while van  W i j n g a a r d e n  [6]  gives 

m o r e  recent  references. A de r iva t i on  of the e q u a t i o n s  in  this sect ion is c o n t a i n e d  in  [8]. 
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